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1 Acurveissuch thatd!

vl J(2x+5) and(2, 5) is a point on the curve. Find the equation of the curve.

[4]

2
R
c 0
0 3cm |pP 6 cm §
The diagram shows a circfé with centreO and radius 3cm. The raddP andOQ are extended to
SandRrespectively so thaDRSis a sector of a circle with cent@. Given thatPS= 6 cm and that
the area of the shaded region is equal to the area of €Xcle
(i) show that angl®OQ = 1z radians, [3]
(if) find the perimeter of the shaded region. [2]
3 (i) Express the equation 2 ¢abs= tarf 6 as a quadratic equation in é@s [2]
(ii) Solve the equation 2 c®8 = tarf 6 for 0 < 6 < r, giving solutions in terms of. [3]
4 (i) Find the first three terms in the expansion®# ax)® in ascending powers of [3]
(ii) Given that the coefficient of? in the expansion ofl + 2x)(2 + ax)® is 240, find the possible
values ofa. [3]
5 (i) Sketch, on the same diagram, the curyessin 2x andy = cosx— 1 for 0< X < 2x. [4]

(i) Hence state the number of solutions, in the intervalO< 2z, of the equations
(@) 2sinx+1=0, [1]
(b) sin2x—-cosx+1=0. [1]

6 The non-zero variableg y andu are such thati = x?y. Given thaty + 3x = 9, find the stationary
value ofu and determine whether this is a maximum or a minimum value. 1 [7
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The diagram shows three poiAg2, 14), B(14, 6 andC (7, 2). The pointX lies onAB, andCXis
perpendicular t&AB. Find, by calculation,
(i) the coordinates aX, [6]

(ii) the ratioAX : XB. [2]

The diagram shows a parallelogr&ABC in which

3 5
— < —_—
OA=| 3 and OB:(O).
-4 2
(i) Use a scalar product to find ands©C. [6]
(i) Find a vector which has magnitude 35 and is parallel to thmv@. [2]

(@) Inan arithmetic progression, the suf), of the firstn terms is given bys, = 2n? + 8n. Find the
first term and the common difference of the progression. [3]

(b) The first 2 terms of a geometric progression are 64 and 48ctegply. The first 3 terms of the
geometric progression are also the 1st term, the 9th terntheaiath term respectively of an
arithmetic progression. Find the valuerof [5]
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10 The function f is defined by fx+— 2x + Kk, X € R, wherek is a constant.
(i) In the case wherk = 3, solve the equation (k) = 25. [2]
The function g is defined by gx+— x* - 6x + 8, X € R.
(ii) Find the set of values & for which the equation(k) = g(x) has no real solutions. [3]
The function h is defined by hx > X% — 6x + 8, x > 3.

(iii) Find an expression forf(x). [4]

11

» X

The diagram shows part of the curye- % — X and pointsA(1, 7) andB (4, 0) which lie on the

curve. The tangent to the curveBintersects the lin& = 1 at the pointC.
(i) Find the coordinates df. [4]

(i) Find the area of the shaded region. [5]
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